1823.
为解决从多数据流挖掘演化事件这一难题,提出了一种多数据流上的谱聚类算法SCAM(spectral clustering algorithm of multi-streams),其相似矩阵基于耦合度构造,而耦合度衡量了两个数据流的动态相似性.提出了算法EEMA(evolutionary events mining algorithm),该算法基于聚类模型的演变挖掘多数据流的演化事件.定义了聚类模型凝聚度,用以衡量聚类的紧凑程度,并证明了凝聚度的上界.基于到上界的距离和规范化相似矩阵的特征间隙,定义了聚类模型质量,并作为EEMA的优化目标自动地确定聚簇数
k.设计了O-EEMA作为EEMA的优化实现,其时间复杂度为
O(
cn2/2).在合成和真实数据集上的实验结果表明,EEMA和O-EEMA是有效的、可行的.… …
相似文献