•   按检索    检索词:    高级检索
     排序:相关度 OA 时间 被引次数 点击次数 下载次数 共有10000条符合的查询结果,以下是第3381-3400项 搜索用时 119 毫秒
[首页] « 上一页 [165] [166] [167] [168] [169] 170 [171] [172] [173] [174] [175] 下一页 » 末  页»
3381.
  
知识图谱(KG)作为一种辅助信息能够有效提高推荐模型的推荐质量,但现有的基于图神经网络(GNN)的知识感知推荐模型存在节点信息利用不均衡问题。为此,提出一种基于知识感知和跨层次对比学习的推荐方法(KCCL)。所提方法在GNN的知识感知推荐模型基础上引入对比学习范式,以缓解稀疏的交… …   相似文献
3382.
  
针对现有基于深度学习的篡改图像检测网络通常存在检测精度不高、算法可迁移性弱等问题,提出一种双通道渐进式特征过滤网络。利用两个通道并行提取图像的双域特征,一个通道提取图像空间域的浅层和深层特征,另一个通道提取图像噪声域的特征分布;同时,使用渐进式细微特征筛选机制过滤冗余特征,逐步定… …   相似文献
3383.
  
针对多行程取送货车辆路径问题(VRP)收敛性与多样性相互制约的问题,提出一种融合自适应大邻域搜索(ALNS)算法和自适应邻域选择(ANS)的混合快速非支配排序遗传算法(NSGA-Ⅱ-ALNS-ANS)。首先,考虑初始解对算法收敛速度的影响,提出一种改进的后悔插入法以获得高质量初始… …   相似文献
李建强  何舟 《计算机应用》2024,44(4):1187-1194
3384.
  
为激活数据质量潜能,构建兼顾信息环境与技术实现的数据质量测量框架,以提升数据挖掘和指挥决策的效用,文中从宏观层面和微观层面对现有的通用型、行业型数据质量测量框架进行梳理、研究,对数据质量维度进行“聚类”,得到数据质量维度类簇,提取了数据质量维度的两类特性,提出面向具体领域的数据质… …   相似文献
3385.
  
在分布式网络中,测量top-K频繁流对资源分配、安全监控等应用至关重要。现有的top-K频繁流测量工作存在不适用于测量分布式网络流量或只考虑单时间周期等局限。为此,提出了分布式网络中连续时间周期的全局top-K频繁流测量方案,在分布节点中布置了紧凑的概率数据结构来记录网络流信息,… …   相似文献
3386.
  
天气研究与预报模式(WRF)是一种应用广泛的中尺度数值天气预报系统,在大气研究和业务预报领域发挥着重要作用。Stencil计算是科学工程应用中一类常见的嵌套循环计算模式,WRF中对大气动力学和热力学方程的数值求解引出了大量空间网格上的复杂Stencil计算,存在多维度、多变量、物… …   相似文献
3387.
  
城市电力负荷预测是城市智能电网规划和调度的一项重要内容.然而,城市电力负荷预测中存在数据不均的问题,给城市电力负荷预测带来了巨大挑战.传统的基于单一模型的方法难以解决数据不均的问题,而现有的基于多模型的预测方法根据电力负荷分布将数据集拆分成多个子数据集,然后分别建立多个预测模型进… …   相似文献
3388.
  
节点分类任务是图领域中的重要研究工作之一。近年来随着图卷积神经网络研究工作的不断深入,基于图卷积神经网络的节点分类研究及其应用都取得了重大进展。图卷积神经网络是基于卷积发展出的一类图神经网络,能处理图数据且具有卷积神经网络的优点,已成为图节点分类方法中最活跃的一个研究分支。对基于… …   相似文献
3389.
  
共同知识是多智能体系统内众所周知的知识集。如何充分利用共同知识进行策略学习,是多智能体独立学习系统中的一个挑战性问题。针对这一问题,围绕共同知识提取和独立学习网络设计,提出了一种基于观测重构的多智能体强化学习方法IPPO-CKOR。首先,对智能体的观测信息进行共同知识特征的计算与… …   相似文献
3390.
  
随着移动通信技术的快速发展和物联网终端设备数量激增,丰富多样的智能应用及海量数据在网络边缘产生,边缘智能应运而生。当前,联邦学习作为一种新兴的分布式机器学习方法,可以在不共享终端设备原始数据的情况下协作完成模型训练任务,是实现边缘智能的重要方式。传统的边缘智能网络以地面通信基站为… …   相似文献
3391.
  
近年来,随着互联网及多媒体技术的迅猛发展,人们获取信息更加方便快捷,然而虚假信息在网络上的传播也日益严重,负面影响不断扩大。为了增强信息的可信度和欺骗性,虚假信息呈现多模态发展趋势,使得检测工作面临更大挑战。现有的多模态虚假信息检测方法大多关注多模态特征的形成,对于跨模态歧义和不… …   相似文献
3392.
  
随着在线教学逐渐成为常态化的教学方式之一,人们对其提出了更高质量的教学需求。各种在线教学平台及互联网上海量的教育资源大大便利了众多学习者,但同时也存在着教育资源丰富但质量参差不齐、缺乏有效的分类整合以及主要依靠人工整理等问题,这就导致人们在获取在线教育资源时往往需要花费大量的时间… …   相似文献
3393.
  
联邦学习是一种隐私保护的分布式机器学习框架,可以让各方参与者在不披露本地数据的前提下共建模型.然而,联邦学习仍然面临拜占庭攻击和用户隐私泄漏等威胁.现有研究结合鲁棒聚合规则和安全计算技术以同时应对上述安全威胁,但是这些方案难以兼顾模型鲁棒性与计算高效性.针对此问题,本文提出一种抗… …   相似文献
3394.
  
GPS是目前最为广泛使用的基于卫星的导航和定位系统,对于无人机而言,它是一个不可或缺的组成部分,提供了关键的精确位置数据,对导航和任务的成功至关重要.然而,GPS欺骗攻击已经逐渐演变成对GPS依赖系统不断增加的威胁.目前,针对无人机的GPS欺骗检测方法大多基于仿真数据提出、依赖于… …   相似文献
3395.
  

卷积作为深度学习中被频繁使用的关键部分,其并行算法的研究已成为高性能计算领域中的热门话题. 随着我国自主研发的申威26010众核处理器在人工智能领域的快速发展,对面向该处理器的高性能并行卷积算法提出了迫切的需求. 针对申威26010处理器的架构特征以及Winograd卷积算法的计算特性,提出了一种高性能并行卷积算法——融合Winograd卷积算法. 该算法不同于依赖官方GEMM(general matrix multiplication)库接口的传统Winograd卷积算法,定制的矩阵乘实现使得该算法的执行过程变得可见,且能够更好地适应现实中常见卷积运算. 整个算法由输入的Winograd变换、卷积核的Winograd变换、核心运算和输出的Winograd逆变换4部分构成,这4个部分并不是单独执行而是融合到一起执行. 通过实时地为核心运算提供需要的变换后数据,并将计算结果及时地逆变换得到最终的输出数据,提高了算法执行过程中的数据局部性,极大地降低了整体的访存开销. 同时,为该算法设计了合并的Winograd变换模式、DMA(direct memory access)双缓冲、片上存储的强化使用、输出数据块的弹性处理以及指令重排等优化方案. 最终的实验结果表明,在VGG网络模型的总体卷积测试中,该算法性能是传统Winograd卷积算法的7.8倍. 同时,抽取典型卷积神经网络模型中的卷积进行测试,融合Winograd卷积算法能够在所有的卷积场景中发挥明显高于传统Winograd卷积算法的性能. 其中,最大能够发挥申威26010处理器峰值性能的116.21%,平均能够发挥峰值性能的93.14%.

… …   相似文献
3396.
研究一类存在一步随机时滞的复杂网络分布式状态估计问题, 采用伯努利随机变量刻画测量值的随机时滞情况. 基于复杂网络模型和不可靠测量值, 分别设计复杂网络的状态预测器和分布式状态估计器, 基于杨氏不等式消除节点之间的耦合项, 通过优化杨氏不等式引进的参数, 优化状态预测协方差. 通… …   相似文献
滕达  徐雍  鲍鸿  王卓  鲁仁全 《自动化学报》2024,50(4):841-850
3397.
随着深度学习和自然语言处理技术的进步, 大语言模型(Large language models, LLMs)展现出巨大潜力. 尽管如此, 它们在处理复杂任务时仍存在局限性, 特别是在任务需要结合规划及外部工具调用的场合. 面向这一挑战, 提出国内首个以军事游戏为背景的中文的复杂任… …   相似文献
3398.
常用气体检测模型需要使用气体传感器阵列响应信号的稳态值对气体进行种类识别和浓度估计, 而在实际环境 中, 气体一般处于动态变化的状态, 气体传感器阵列响应信号难以达到稳态值或长时间维持稳定状态. 针对上述问题, 提出 一种由动态小波残差卷积神经网络(Dynamic wavelet… …   相似文献
3399.
  
零样本学习旨在解决样本缺失情况下的分类问题.以往嵌入式零样本学习算法通常只利用可见类构建嵌入空间,在测试时不可避免会出现过拟合可见类的问题.基于此本文提出了一种基于类别语义相似度的多标签分类损失,该损失可在构建嵌入空间的过程中引导模型同时考虑与当前可见类语义上相似的未见类,进而将… …   相似文献
3400.
  

随着人工智能民主化的发展,深度神经网络已经被广泛地应用于移动嵌入式设备上,例如智能手机和自动驾驶领域等. 随机计算作为一种新兴的、有前途的技术在执行机器学习任务时使用简单的逻辑门而不是复杂的二进制算术电路. 它具有在资源(如能源、计算单元和存储单元等)受限的边缘设备上执行深度神经网络低能耗、低开销的优势. 然而,之前的关于随机计算的工作都仅仅设计一组模型配置并在固定的硬件配置上实现,忽略了实际应用场景中硬件资源(如电池电量)的动态改变,这导致了低硬件效率和短电池使用时间. 为了节省电池供电的边缘设备的能源,动态电压和频率调节技术被广泛用于硬件重配置以延长电池的使用时间. 针对基于随机计算的深度神经网络,创新性地提出了一个运行时可重配置框架,即RR-SC,这个框架首次尝试将硬件和软件的重配置相结合以满足任务的时间约束并最大限度节省能源. RR-SC利用强化学习技术可以一次性生成多组模型配置,同时满足不同硬件配置(即不同的电压/频率等级)下的准确率要求. RR-SC得到的解具有最好的准确率和硬件效率权衡. 同时,多个模型配置运行时在同一个主干网络上进行切换,从而实现轻量级的软件重配置. 实验结果表明,RR-SC可以在110 ms内进行模型配置的轻量级切换,以保证在不同硬件级别上所需的实时约束. 同时,它最高可以实现7.6倍的模型推理次数提升,仅造成1%的准确率损失.

… …   相似文献
[首页] « 上一页 [165] [166] [167] [168] [169] 170 [171] [172] [173] [174] [175] 下一页 » 末  页»