图神经网络和超图神经网络(hypergraph neural network, HGNN)已经成为协同过滤推荐领域的研究热点. 然而实际场景中用户和项目的交互非常复杂,导致用户之间存在高阶的复杂关系,而普通图结构只能表达简单的成对关系,对网络结构的堆叠容易导致中间层表征的过度平滑,在稀疏场景下的用户建模、用户相似性发现与挖掘方面能力较弱;同时,异质超图神经网络的复杂结构使得模型的训练效率较低. 在以微信“搜一搜”等内容平台为代表的高度稀疏数据场景中,对于基于用户所属群体画像的圈层内容推荐任务,现有模型推荐效果差、用户表示的可解释性弱. 因此, 针对该类任务,提出了一个新的轻量同质超图神经网络模型,该模型包含用户交互数据至超图的转化、卷积生成用户表征序列、用户表征计算过滤. 模型首先将用户-项目交互数据转化为只含用户节点的同质超图并计算得到用户表征解耦序列初始值,随后根据超图拉普拉斯过滤矩阵进行信息传播与序列值的迭代生成,通过不使用激活层的卷积方法简化模型结构,并根据提出的均值差JK注意力机制为每个序列值生成权重矩阵. 最终,通过对解耦序列加权求和、过滤实现对用户表示的编码,并在真实数据集上进行实验验证了所提模型的相对更优效果.
… … 相似文献由于深度神经网络(deep neural network, DNN)模型的复杂性和不确定性等属性,对模型的一般行为和边界行为进行充分的测试是保障模型质量的重要手段. 当前的研究主要基于制定的覆盖准则,结合模糊测试技术生成衍生测试样本,从而提升测试充分性,但较少综合考虑测试样本的多样性及个体揭错能力. 意外充分性指标量化测试样本与训练集在神经元输出方面的差异,是测试充分性评估的重要指标,目前缺乏基于此指标的测试样本生成方法. 因此,提出了一种意外充分性引导的深度神经网络测试样本生成方法,首先,筛选对于决策结果贡献较大的重要神经元,以其输出值为特征,改进意外充分性指标;其次,基于测试样本的意外充分性度量筛选具有揭错能力的种子样本;最后,利用覆盖引导的模糊测试思想,将测试样本的意外充分性值和DNN模型预测的类别概率差异作为联合优化目标,利用梯度上升算法计算扰动,迭代生成测试样本. 为了验证所提方法的有效性,选取5个DNN模型作为被测对象,涵盖4种不同的图像数据集,实验结果表明,改进的意外充分性指标能够有效捕捉异常的测试样本,同时减少计算时间开销. 在测试样本生成方面,与方法DeepGini和RobOT相比,基于所提的种子样本选择策略生成的衍生测试集的意外覆盖率最高提升了5.9个百分比和15.9个百分比. 相比于方法DLFuzz和DeepXplore,所提方法的意外覆盖率最高提升了26.5个百分比和33.7个百分比.
… … 相似文献基于大数据机器学习的智能软件研发过程需要综合运用软件工程、数据与领域知识工程、机器学习等多方面的知识和工具,涉及的研究主题和人员角色众多,技术实现手段复杂、研发难度大. 面向智能软件的需求工程需要面对领域知识、业务知识、数据科学交织带来的挑战. 然而,如何将领域知识和端到端的机器学习技术恰当地融合到给定的业务流程之中,以及如何应对工业、医疗等高可信要求场景中的可解释性需求,仍是亟待探索的重要研究问题. 调研了近年来面向机器学习应用的需求工程研究文献,对该领域的发展现状、核心问题和代表性方法进行综述. 提出了面向机器学习应用的可解释性需求分析框架. 基于该框架,通过一个工业智能应用案例分析了未来待研究的重要问题,展望了可行的研究路径.
… … 相似文献图表示学习已成为图深度学习领域的一个研究热点. 大多数图神经网络存在过平滑现象,这类方法重点关注图节点特征,对图的结构特征关注度不高. 为了提升对图结构特征的表征能力,提出了一种基于图核同构网络的图分类方法,即KerGIN. 该方法首先通过图同构网络(graph isomorphism network,GIN)对图进行节点特征编码,并使用图核方法对图进行结构编码,进一步利用Nyström方法降低图核矩阵的维度. 其次借助MLP将图核矩阵与图特征矩阵对齐,通过注意力机制将图的特征编码和结构编码进行自适应加权融合,进而得到图的最终特征表示,提升了图结构特征信息的表达能力. 最后在7个公开的图分类数据集上对模型进行了实验评估:与现有图表示模型相比,KerGIN模型能够在图分类准确度上有较大幅度提升,它可以增强GIN对图结构特征信息的表达能力.
… … 相似文献