8703.
目的 结直肠息肉检测可以有效预防癌变,然而人工诊断往往存在较高漏检率,使用深度学习技术可以提供有助于诊断的细粒度信息,辅助医生进行筛查。实际场景中,息肉形态各异和息肉边缘模糊的特点会严重影响算法的准确性。针对这一问题,提出了一种边缘概率分布模型引导的结直肠息肉分割网络(edge distribution guided high-resolution network,HRNetED)。
方法 本文所提的HRNetED网络使用HRNet结构作为网络主干,设计了一种堆叠残差卷积模块,显著降低模型参数量的同时提高模型性能;此外,本文使用边缘概率分布模型来描述息肉边缘,提高模型对边缘检测的稳定性;最后,本文在多尺度解码器中引入边缘检测任务,以加强模型对息肉边缘的感知。
结果 本文在Kvasir-Seg (Kvasir segmentation dataset)、ETIS (ETIS larib polyp database)、CVC-ColonDB (colonoscopy videos challenge colon database)、CVC-ClinicDB (colonoscopy videos challenge clinic database)和CVC-300 (colonoscopy videos challenge 300) 5个数据集上进行测试。最终,HRNetED在CVC-ClinicDB和CVC-300数据集上的Dice系数(Dice similarity coefficient)和平均交并比(mean intersection over union,mIoU)指标均优于对比算法,且在CVCClinicDB数据集上相较于对比最优模型分别获得了1.25%和1.37%的提升;在ETIS数据集上,Dice系数表现优于对比最优算法;在CVC-ColonDB数据集上,Dice和mIoU处于较优水平。此外,HRNetED在Kvasir-Seg、ETIS、CVCColonDB数据集上的HD
95距离相较于对比最优算法分别降低了0.315%、29.19%和2.95%,在CVC-ClinicDB和CVC-300数据集上表现为次优,同样具有良好的性能。
结论 本文提出的HRNetED网络在多个数据集中表现稳定,对于小目标、模糊息肉有较好的感知能力,对息肉轮廓检测能力更强。… …
相似文献